
JOURNAL OF COMPUTATIONAL. PHYSICS 16, 127-149 (1974) 

Numerical Solution to Free Surface 

Axisymmetric Rotational Flows* 

ROLAND MARIA-SUBE 

D. 2s SC. Luboratoire d’lnformatique pour la Mkcanique et les Sciences de I’Ingt!nieur 
B.P. 30,9I Orsay, France 

Received April 11, 1973 ; revised June 4, 1974 

A method is proposed for the computation of free boundaries in axisymmetric 
problems. The basic idea lies in the use of a parametric representation as it is done in the 
hodograph method for two-dimensional irrotational problems; we show in the following 
pages how an extension of the same principle to more general problems can be done 
with the use of a successive approximation heuristic process. A finite-element approxima- 
tion is used for the computation of the parametric function and of the governing equa- 
tions of the flow inside domains whose boundaries may have very general forms. A 
computational example is given involving rotational jets produced in the presence of an 
outer flow. 

I. INTRODUCTION 

The hodograph method and its developments have proved to be useful in the 
study of free-boundary problems; consequently, there are classical applications of 
these methods to the solution of steady, two-dimensional irrotational flows [l, 2,3]. 
Their principle lies in the use of a parametric representation of the flow, with the 
hodographic variable w = df/dz (or with a function of w), where f = F + i$ is 
the complex potential function of the flow in the z = x + iy plane. 

The hodograph procedure introduced by Helmholtz and Kirchhoff is used 
especially when the domain of variation of w  is known; however, this condition is 
seldom fulfilled. Even when this domain is known, the determination of f(w) 
reduces to a Dirichlet’s problem for domains where analytical methods often lead 
to unsolvable computations. However, recent developments of analog and 
numerical methods using quasiconformal transformations and curvilinear meshes 
permit solutions to Dirichlet and Neumann problems inside very general domains. 
Nevertheless, only potential flows have been studied [4] by these methods, and the 
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solutions found in the literature apply only to inverse problems. We wish to 
introduce in this paper a pseudo-hodograph method able to carry out a solution 
for direct, inverse, or mixed (i.e., with both direct and inverse boundary conditions) 
problems of axisymmetric rotational (or irrotational) flows. 

After a general description of the principle, in Sections II-VI, an application of 
this method to a nonlinear problem of jet will be described in Section VII. 

II. PFUNCIPLE OF THE METHOD 

The method which is presented here is a generalization of a more classical 
procedure which is itself derived from the hodograph method for incompressible 
flows. 

The classical aerodynamic approach to the problem of potential flows inside 
domains with unknown boundaries is as follows. 

Let f(z) be an analytic function which represents the complex potential function 
of the flow: 

f(z) = pl + $9 z = x + iy. 

Let (-9) be the geometric domain and @) image of (9) underf. Let (%) and (@ 
be the boundaries of (9) and @), respectively. Boundary conditions off are 
usually chosen in such a way that (‘8) is of rectangular shape. If we choose 
log(d!/&) as a parameter, it is then possible to solve the problem in two steps. 
First, one computes the analytic function logf(z) in G(pl, $I) where boundary 
conditions are given (inverse problem). Then one returns to the physical plane by 
an integration of the differential equation 

dz = jf”f. 
fo w 

An advantage of this procedure over the classical hodograph method is that it 
enables the solution of problems with more general inverse conditions of (df/dz)(z) 
on (Q. On the other hand, solutions of problems with mixed conditions (Dirichlet 
and Neumann) have to be carried out, and numerical techniques must replace 
purely analytical methods. 

A. Definition of the Parametric Variable 

We consider now a more general problem whose equation of motion should be 
of the form 

(a2yvx2) + (~2$wy2) = s, (1) 
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where 1,4 is, for instance, the stream function of an aero- or hydrodynamics problem. 
Let S be a function of x, y which may depend on $J. At this time it is not necessary 
to define S any more precisely. The geometric domain may be as represented in 
Fig. 1, where JJ’ is the free boundary. To start the computation, an arbitrary form 
is given to JJ’. Boundary conditions of the problem are: 

4 = 0 on OB, 

t,b = 1 on CJJ’, (2) 
da,b/dn = 0 on OC and BJ’. n is the unit vector perpendicular to (%). 

FIGURE 1. 

The balance condition for an incompressible bidimensional jet in presence of 
motionless outer flow is 

(d#/dn) - u = 0. 

More generally the balance condition can be written under the implicit form: 

B((l/pr>(d~/dn),...,) = 0. 

The unspecified arguments of B can be, for instance, the speed of the flow outside 
of the jet, the gravity forces, the stagnation pressure, etc. 

There is no potential function for flows defined by equations similar to (1). Thus 
one has to look for a new parametric function. Let p be a harmonic function 
verifying boundary conditions similar to (2) on (9: 

p = 0 on OB, 

p = 1 on CJJ’, 

dpjdn = 0 on OC and BJ’, 
(4) 

and let A be the conjugate function of p. We have thus defined an analytic function 
F(z) which has no physical significance, but which may play the role of parameter 

F(z) = h + ip. (5) 
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We shall see later how the numerical computation of F(z) may be carried out for 
general domains. The boundary conditions (4) are such that F(z) determines a 
conformal mapping of (9) onto @), where ~2 is of rectangular shape. This property 
is important when discrete modes of computation are used and allows us to write 
the equation of motion in the (X, p) plane. 

B. Definition of the Problem in the F-Plane 

The equation of motion may be written in the F-plane, as follows: 

where 
M= jdF/dzI. 

Boundary conditions are: 

# = 0 on OB, the homologue of OB, 

I) = 1 on CJ’, 
- - 

d#/dh = 0 on OC and JJ’, 
- 

with a supplementary condition on JJ’ 

(6) 

(7) 

(8) 

M * (dt//dp) - a = 0. (9) 

As F is analytic, as are Sz = dF/dz and L! = log(dF/dz). Therefore 17 may be 
decomposed into its real and imaginary components 

II(z) = A(z) + i@(z), (10) 
where 

A(z) = log I dF/dz 1, (11) 

O(z) = -arc tan(@~/~x)/(~~/~y)). (12) 

/l(z) and O(z) are harmonic conjugate functions. Thus A(z) may be determined 
by solving the relation 

QVA = 0, (13) 

with the boundary conditions 

&l/&z = -@3/i% on (%) - JJ’. O(z) is given on the known part of (%‘) 
(Direct problem). (14) 

A = A(z) on JJ’. On the unknown part of (2?), M and thereby 

(1 is defined by (9). 



FREE SURFACE ROTATIONAL FLOWS 131 

Equations (6) and (13) are thus connected by (9) on JJ’ and by the second 
member of (6) in (LB). The solution of this system may be found by a successive 
approximation procedure. At each approximation the unknown boundary JJ’ 
is obtained by integration of (15) 

s 
F dF 

z--2()= -. 
Fo Q 

III. QUALITATIVE DISCUSSION OF THE METHOD 

In order to make the discussion easier, we shall introduce the function 

$=*--l-L. 

The equation of motion may be written as 

(a2?mx2) + (a2d/w> = (l/M3 &<sJ + 4 

with boundary conditions 

4 = 0 on OB and c;r’, 

d$/dA = 0 on m and BJ’, 

and the balance condition on JJ’ 

M(d$/dp) - a = 0. 

(15) 

(16) 

(17) 

(18) 

(19) 

Considering Eqs. (14) and (16), we notice that the computational procedure we 
have described is identical to a classical method derived from the hodograph 
method, when $ = 0 in (9). If (5) has a nonzero second member S, function I,& is 
always different from zero, however p is chosen. If one examines the general class 
of free-boundaries problems, where unknown boundaries are defined by a condition 
on the normal derivative of the main variable 

with 
(20) 

it is easy to see that the less 4 is, the faster the convergence will be. Thus, among 
the infinity of ways to choose boundary conditions for p, one selects the definition 
that minimizes $ in (9). For example, in the case of a two-dimensional rotational 
flow, TV will be chosen to be identical with the stream function of an irrotational flow 
occuring in the same domain (9). 
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Rotational problems encountered in reality, such as those occuring in “fluid 
mechanics” (flows generated by propellers, turbomachines and compressors), 
respect the assumption made on $. For these problems, it is generally possible 
to find a function z,6 sufficiently small to let @,&/&)(A, TV) vary extremely slowly 
from one approximation to the next one; this property permits a fast convergence 
of the computational procedure. 

IV. NUMERICAL TRANSFORMATION OF THE DOMAIN 

In Section II.B, h and p were chosen as independent variables of the problem. 
The properties of the proposed method and its relationship with the hodograph 
method appeared clearly with this choice. Furthermore, the function -F(z) played 
a double role, as it represented both the function of the transformation 
(x, JJ) 3 (A, p) and the parameter connecting the spatial complex variable 
z = x + iy to #I, the main function of the problem. Nevertheless, the difficulty in 
determining a pair of conjugate harmonic functions inside general domains, leads 
to the use of another transformation function. Winslow [S], Bellevaux [7] and more 
recently Chu [8] have shown that a nonanalytic transformation function H(z, Z) 
may be more convenient from a numerical computation point of view, where 

H(z, 5) = 01 + i/?, (21) 

and a and @ are a couple of harmonic but nonconjugate functions. Let (g) and (@) 
be the images of (9) and (%?) under H, respectively. One can fix a correspondence 
(4 v) 0 (a, PI on (9 in such a way that (@ will have a rectangular shape. The 
correspondence between (9) and (8) can then be determined by solving a system of 
two coupled quasilinear, elliptic equations. This system can be approached by a 
finite difference homologue [5,7, 81 leading to an algebraic system whose solution 
may be found by using a classical S.O.R. process. One can notice that there is no 
necessity to set a and /I to be harmonic. Such a choice leads, however, to a relatively 
easy computation of the correspondence and generally gives a good partition of the 
physical domain (9). Furthermore, properties of elliptic equations are saved in 
the (01, /3) plane, provided that the (01, /3) - (x, JJ) correspondence is well set on (%?). 
When the (9) o @) correspondence has thus been automatically determined, the 
image transformed in the (01, /3) plane of any elliptic equation may then be solved 
in the rectangular domain (g) by using finite difference methods [5]. However, 
when the dependent variable has to be derived afterwards, better accuracy may be 
obtained when using a finite element method recently developed by Bellevaux [7]. 
Several papers have set forth [lo, 1 I] applications of this work in using a Gale&in 
method in the (01, /I) plane after having made a variational formulation of the 
problem, 
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V. COMPUTATIONAL SCHEME 

Figure 2 shows the main steps of the computational scheme proposed for free- 
boundaries problems. Free boundaries are determined usingthe following successive 
approximations procedure. At each approximation of order (n), the frontier (%(n)) 
of (.PQ) is supposed to be entirely given. This is the case particularly at the begin- 
ning of the computation when ol(x, JJ) and /I(x, v) are given on (G?(O)) (step 1). 

The correspondence H (0) (z to), Z_(O)) is then determined by solving an elliptic system 

[5,7,8] in @to)) (step 2). @O)(a, /3) can then be deduced from @O)(x, y) which is 

given with %PO). The conjugate log M to) of 63(O) is then computed in (LX, /3) plane 

El T::T 

3 
STOP 

FIG. 2. Computational scheme. 
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(step 3) by solving a Neumann problem; M’O)(a(O), fl(“)) is then determined in 
(&O)). The main function # of the problem is then computed (step 4). When 
#(O) has thus been determined in (@O)), C@(O)/& can be evaluated on JJ’ and a 
new repartition JcP)(~(~), /3(O)) can be found on JJ’ in order to satisfy balance 
condition (3). With new values log M(r) on JJ’ one can compute log Q~)(cx(~), p(O)) 
in (C&O)) by solving two quasilinear, elliptic equations with mixed boundary 
conditions (step 5). Log M(l) has a Dirichlet condition on JJ’ and a Neumann 
condition on (%YO)) - JJ’. O(l) has a Dirichlet condition on (%(O)) - JJ’ and a 
Neumann condition on JJ’. When log Q (l) has thus been determined, a new 
approximation of JJ’ can be obtained by integration of (15). If the convergence test 
(step 6) on the free boundary is not satisfied, another loop of computation is started 
again at step 2. 

The solutions of partial differential equations encountered in steps 3-5 of the 
scheme are computed by using a finite-element approximation. 

VI. TEST OF ACCURACY ON A SIMPLE CASE 

In order to verify the accuracy of the method, it has been applied to a two- 
dimensional problem of incompressible irrotational flow. 

Let us consider (Fig. 3) a domain similar to the one shown on Fig. 1, but with a 

FIGURE 3. 

simplified shape of the boundary on CDJ. Let 2h be the width of the upward 
channel; I is the length of the diffuser; 28, is the angle of diffusion and 2h, the 
width of the jet downstream. Let V and V, be the upstream and the downstream 
speed of the flow, respectively. When k = V/V, = h,/h and 8, are given (inverse 
problem) the analytical expression of l/h is 

I k1 1 
= 0 P2 + (l/4 + S[ 

1 2 -=- --- 
h p2 + a p2 + 1 1 &,(a+b) lb dp, (22) 

where a = krloo and b = r/e, . A demonstration of (22) can be found in [l]. 
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Computations for the three following cases: 

k = 2, 0, = 3714; 
k = 2, 8, = 43; 

and k = 1.5, 0, = nj6 

have given the following results, respectively. 

I/h = 0.269, 0.149, and 0.198. 

The same problem has been computed by the pseudohodographic method proposed 
in this paper. Two-dimensional irrotational jets have thus been determined for 
several values of 8, and I/h (direct problems). Results are illustrated by Fig. 4 where 
analytical values are also reported for comparison. After this verification of the 
method’s accuracy by analysis, its application to the solution of an axisymmetric 
problem of rotational jet in presence of an outer flow shall be described in 
Section VII. 

I . 

1 %l 
0 0,1 002 083 0,4 0,s 

A ANACISIS * NUMERICAL RESULT 

FIG. 4. Comparison of numerical and analytical results. 

VII. APPLICATION: ROTATIONAL JETS WITH OUTER FLOW 

A.. Equation of Motion 

In the following example, we shall consider an axisymmetric rotational flow of 
inviscid incompressible fluids. Let us recall the equation of motion, whose formu- 
lation is classical [18, 19, 201. 



136 ROLAND MARIA-SUBE 

Consider a fixed reference system whose Ox axis (Fig. 5) is the axis of symmetry of 
the flow. The semipolar components of the radial, tangential and axial speed are 
u*, u* and w*, respectively; the semipolar coordinates are x*, ~9* and r*. From the 
equation of continuity, we know there exists a stream function #*(x*, r*) for the 
meridian flow. This stream function is governed by the quasilinear, second-order 
partial derivative equation: 

&(-&%)+$(-$$)=I*(+$@. (23) 

FIGURE 5. 

The expression for the meridian speed at point A4 is thus 

v* = (l/r*)(d$*/dn*), (24) 

where n* is the unit vector normal to the stream surface at point M. The asterisk 
shows that the variables concerned are dimensional. 

E,* is the total energy of a fluid particle of unit mass: 

y* is a function of $* uniquely, called the “tangential speed function”: 

y*(z)*) = v*r*. (26) 

Each component of the speed is then given by 

u* = 1 a** 
r* ar*’ 

v* = y* 
r* ’ 

)+)* - _ 1 a** - 
r* ax* ’ 



FREE SURFACE ROTATIONAL FLOWS 137 

In order to transform to dimensionless quantities, let us set 

X* = xR1*, +* = ~l*R:2#, y* = V,*R,*y, 
(28) 

r* = r-RI*, Ea*= v,*” x E,, 

where RI* and VI;* are reference quantities which will be defined with boundary 
conditions for each example. The relations (28) define dimensionless variables that 
satisfy equations identical to (23)-(27), but without asterisks. 

When the motion is purely meridian, the component v of the speed vanishes and 
the second member of (1) takes on the simplified form 

(29) 

In the following we shall set S = r(dE,/d#). 

B. Boundary Conditions 

We consider two coaxial flows around the axis of symmetry Ox (Fig. 6). The 
physical domain of the inner flow is (.QJ, limited by an axisymmetric surface whose 
meridian trace is (gi). The physical domain of the outer flow is (go), limited by a 
surface whose meridian trace is (g,,). (Vi) and (VO) have a common part ACBDE. 
The inner flow is limited upstream by a rectilinear channel whose meridian trace 
is AB, parallel to Ox. This channel is prolonged by a rectilinear diffuser whose 
meridian trace is BC (BC = r*), and whose vertex semiangle is 8, = (Ox, BC); 
CDE is the meridian trace of an arbitrary shape given to the free surface at the 
beginning of the computation. For computational purposes, the flow has to be 
limited upstream by OA and downstream by EF. The surfaces represented by OA 
and EF are supposed to be located sufficiently far from the diffuser. It is assumed 

FIG. 6. Physical domain. 
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then that the characteristics of the flow in the corresponding sections are very close 
to the asymptotic values obtained when x + i co. The external flow is limited by 
the outer domain (g,,) whose meridian boundary is given by ABCDEHGA. Let 
bA = RI* and ?% = pR,*; VA is the mean flow-speed through the section a. 
The boundary conditions for the inner flow are 

#=O on OF, 

(304 

d#/dn = 0 on OA and FE, 

and for the outer flow 

*=; on ABCDE, 

d#/dn = 0 on AG and EH. 

v$ is the mean speed of the flow through the section AG. 
The outer and the inner flows are connected by the balance condition on CDE: 

(+ z)” - (+ $,” - K = 0 for every point on CDE. (31) 

ni is the unit normal vector on (vi); n, is the unit normal vector on (QY,); K is an 
unknown constant. 

If the outer flow is motionless, then (31) takes the simplified form 

((l/r)(d#/dnJ) - K = 0. 

This case has been studied in [ll] and [21]. Furthermore, the Kutta-Joukowski 
condition at the trailing edge of the diffuser sets the free surface to be tangent to 
the diffuser at point C. This condition shall be taken into account in boundary 
conditions imposed on the parametric function IT described later in Section VI1.E. 

In order to compute a numerical solution of the problem, we shall replace the 
strong formulation (29) by a weak formulation (32): 

1 a* JS ( 
d# -- .*+!&.a97 

9r ax ax ar ar 1 dxdr = - s oY+- JJ S - q~ - dx dr 
a 

(32) 
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where IJJ and 4 are square bounded and have square-bounded first derivatives in 
(9J and (go). Boundary conditions on y are 

q~ = 0 on OF, ABCDE and GH. (33) 

Boundary conditions on q~ and # allow us to simplify the expression of (32), which 
becomes 

Equation (34) is then computed using a Galerkin approximation that leads 
[7, 10, 1 l] to the following linear algebraic system. 

where 

Cij = 
JJ B qiqj dx dr, 

(35) 

(38) 

Sk = i qi(x, r) S(xi , rJ. 
t-=1 

(3% 

vc are test functions; k is the number of meshes covering the whole domain (9); 
xi and r+ are the coordinates of the center of the mesh Pi . Actually, the numerical 
computation is carried out in the transformed plane (a, /I) where 01 and /3 are 
nonconjugate solutions of two Dirichlet problems in the (x, r) plane. aij and cij 
are given by 

581/16/z-4 
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p = f [($j)” + ($)‘], 

R = f [(z)” + (;)‘I, 

C. Computational Procedures 

The general principle used for the solution of this problem has already been 
described in Section V. We shall see now on a more practical point of view how 
are the computations carried out. The free surface CDE is computed by a procedure 
of successive approximations, starting from an arbitrary given shape. At each 
approximation, one has to solve (29) in the two independent, axisymmetric domains 
(gi) and (.C@,,) with boundary conditions (30a) and (3Ob), respectively. Since the 
domains (Bi) and (go) have the curvilinear boundaries (gJ and (qO), the method 
uses a quasiconform transformation that changes (.G@J and (ZB,,) into rectangular 
shaped domains (gC) and (go). The transformed equation of motion is then solved 
numerically in (GJ and (go). When this solution has been obtained for say, 
9:“) and L#c’ which correspond to the nth approximation of the free boundary, 
the (n + 1)st approximation is computed using the parametric function L! 
(see Section 1I.A) which depends on condition (31). 

The computational scheme is shown in Fig. 7. 

1. The values of x and r are read at each node of (‘ZJ and (%?,J. An arbitrary 
shape has been given to the free surface CDE to initialize the computation. 

2, 3. The computation of a curvilinear mesh (Fig. 8) and of the coefficients aif 
and cij is carried out. 

4. The analytical function rl = log M is computed either in (ZBJ or in (.C@,,). 
A discussion of this choice is given in Section E. 

5. $ is initialized in both (gi) and (go). 

6, 7, 8. The different steps of the inner loop of approximations which evaluate 
the second member of the equation of motion; the details of this procedure 
are examined in Section D. 

9. Values of the speed are computed on CDE for the inner and outer flows. 



q 2 

q 3 

q 4 

q 5 

q 6 

q 7 

q 8 

q 9 

q 10 

q 11 

q 12. 

q 13 

q 14 

Computation of +:+I 

t 

(I: Sk$+l ] 

m,m+l 

< 

Computation of thespeed on COE 

t 
Computation ofA’;+” on CDE 

t 

Computation of 0, (qn 0. c 

t 

1 Computation of x’;+‘j~tJ+” 1 

FIG. 7. Computational scheme. 
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FIG. 8. Representation of the physical domain by a curvilinear mesh. 

10. From these values new values are determined for rl and for 0 on CDE. 
This procedure is examined in Section E. 

Il. The analytical function 0 -cn+l) is computed in one of the two domains (9J 
or G%>. 

12. The (n + l)st shape is then obtained for CDE, from @Yn+l) and LI(~+I). 
A new curvilinear mesh has to be computed on BT+l and Bz+l. 

13. Test whether another external loop has to be computed. 

14. Print the results. 

D. Inner Loop of Approximations 

It can be seen that the values of the second member of (29) cannot be computed 
directly, even when E,( II/) is a given function. S = r(dEJd#) is indeed a functional; 
therefore (29) is not a Poisson equation, and a procedure of successive approxi- 
mations has to be used to find its solution. This constitutes the inner loop of 
approximations examined here. 

Suppose that the nth approximation of the free surface (outer loop) has been 
computed; to find the (n + I)st approximation, @ in CBtn) has to be computed. 
First, the function 4 is initialized at 4c), so that S,, = r(dEJd4p)) can easily be 
obtained when E,($) is given. Then #I”), and more generally #;+1 , is obtained by 
solving (40). 

a - L~)+f($~)=S(~). 
( ax r (40) 
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An approximate solution of Eq. (40) is then obtained using the Galerkin finite 
element method already described that yields to the linear system (35). The 
procedure is terminated when max(ai) 1 $I;+~ - $1 / < E. E is a given constant. 

E. Outer Loop of Approximations 

Let us suppose that step 9 of the computational scheme has been reached. The 
function @ has been computed in SBin and 62,, s corresponding to the nth approxi- , 
mation on the free boundary. One determines a (n + 1)st approximation of CDE 
using the following procedure. 

First the values T/i’“’ and I’,$“’ of the speed on both sides of CDE are computed 
(step 9). This can be done by using the expression 

v = $ g ((%)” + (g)2)1’e. (41) 

Let us consider the balance condition (31) for CDE; this condition may be written 

v,z - vi” = K 

where K is constant on each node on CDE. That condition is not generally 
fulfilled. If one sets K to be equal to V, 2 - Vi2 at a reference point on CDE, then 
at the nth approximation one has 

([Jp]2 - [V,!“‘]2} - K” z (I$,)} (42) 

where {R(“)} is the error vector. 
When the balance condition (31) is fulfilled everywhere on CDE, then {R} must 

vanish. The computational procedure consists, then, in remodeling the shape of 
CDE using an analytical function 17 in order to minimize {R}. This function can be 
defined in (gi) or (g,) which are both rectangular shaped; actually one chooses the 
domain where the speed along CDE is the most significant. 

As the given examples are computed for 0 < To1 < 1, IT will be defined inside 
(gi). Practically, the choice on U si made as follows. 

17(z) = log(dF/dz) (43) 

where F(z) = X(z) + &(z) defines a conformal mapping of (Si) onto (aa). 
If analytical functions h and p are chosen in such a way that A is constant on OA 

and EF and &l/an = 0 on ABCDE and OF, while p is kept constant on ABCDE 
and OF and +/an = 0 on OA and EF, then 

1T = A + i0, (44) 

A = log M = log (($)” + ($)2)1’2, (45) 

13 = -arc tan((aA/ag(aA/ay)). (46) 
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/1 and 0 are analytical functions with given boundary conditions on the given part 
of the boundary: 

8 is given on (%?J - (gj), where (%$) denotes the free boundary CDE (47) 

On %?j boundary conditions are computed as follows. M(“) is supposed to be known 
on 4”). the expression of the speed on 4”) can be given in the (h, p) plane , 

vy = (M’“‘/r’“‘)(d~(n)ldtL). (48) 

A new repartition Mcn+l) is chosen on %i , in order to satisfy the equation 

(49) 

Thus, computations of step 10 are made, using (26) 

Values of /In+l on CDE can then be obtained. From these @n+l/an = aA*+l/as 
can then be evaluated on CDE. 

As On+1 is known on the given part of Ci , On+l can be computed in .9i by 
solving a Laplace equation. This computation is accomplished in step 11 using the 
Gale&in approximation. Then integrating the relations (51) on CDE, 

dxn+l = (cos @‘+l)/Mn+l dA, 

drn+l = (sin On+l)/Mn+l dh, 
(51) 

one obtains P+’ (step 12). The 
condition (52) $ fulfilled (step 13): 

outer loop of approximations is ended when 

max 1 rn+l - r” I < q. 
41 

(52) 

An accuracy of 1OAa is obtained in practice within eight approximations. 

F. Results 

Figure 8 shows the curvilinear mesh used to represent (90 and @J. The shape 
of CDE shown in Fig. 8 is the one taken at the start of the computation. 

A test has been made for the case where there is no discontinuity of energy 
through the surface CDE. Flows in 9f and go are irrotational. Several compu- 
tations for different values of V,*J Vz have been carried out to obtain the variations 
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(Fig. 9) of the difference of the total pressures Pi - PO in the inner and the outer 
flows when V,lV, varies. One has 

Pi - PO = (Pi* - P,*)/&p*v,*2 = ((qy - (v,*,))3/(vg)2 (53) 

where the subscript 2 indicates that corresponding values are taken far downstream. 
Figure 9 shows the value of V,,,/Vi, for which the computed free surface CDE is 

an ordinary stream surface. With the corresponding boundary conditions, a 
computation of that case is made using the pseudohodographic method. The 
stream surface thus obtained has been compared with the shape obtained with a 
classical computation of an irrotational axisymmetric flow inside (LBi + zZ@J; the 
superposition of the two results is very good. 

PI-PO 
4 

0:6 

-0.1 t* 

FIG. 9. Variation of the total pressure difference with the outer/inner speed ratio. 

Figures lOa,b show the results obtained for a rotational jet in the presence of an 
outer irrotational flow. The geometry of the diffuser is defined by the parameter 
F/RI* = 0.28 and 0, = 7~14. Figure 10a gives the variations of the speed in the 
inner flow along ABCDE; a comparison is made with the results obtained when the 
inner flow is h-rotational. Figure lob shows the shapes computed for the corre- 
sponding free surfaces. Figure 11 shows the behavior of ME, in the inner flow 
for the rotational case. 

The computations were performed on the UNIVAC 1108/1106 system of the 
Faculte des Sciences in Orsay, University of Paris. The program, written in 
Fortran V language, comprises nearly 2000 statements. The physical domain is 
represented with a 2025 nodes grid (765 nodes for (gi) and 1260 nodes for (g,,)). 
For each value of V,/ V, , the whole computation is performed within approximately 
8 min of the 1108 computer. 



1.5 '- 

o.oi 
b I>0 1.5 2.0 2.5 3.0 4 

- RoloLional flow ---- lrrotolionol flow 

FIG. 10a. Variation of the speed in the inner flow along the boundary ABCDE. 
FIG. lob. Computed shape of free surfaces. 

IO' bEa 

t 

FIG. 11. Variation of the total energy in the inner rotational flow. 
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VIII. CONCLUSIONS 

The method we have introduced has been used successful in solving free- 
boundary problems occurring with axisymmetric rotational flows produced in the 
presence of an outer flow. The applications presented in this paper involve incom- 
pressible flows, but the solution of problems involving compressible flows will be 
published soon [23]. Among other possible applications are free-surface problems 
in flows involving nonzero gravity forces [17]. Computing times never exceed 8 min 
on an UNIVAC 1108 computer, and a good accuracy on the free boundary shape is 
always obtained within less than ten approximations. Each application has proven 
the great versatility of the method, whose apparent complexity lies only in the 
presentation and is due to the use of two transformed planes. A modular structure 
has been given to the 2000 FORTRAN statements program that carries out the 
whole computation. This program comprises general purpose subroutines and 
specific subroutines. Among routines of the first type, figure several programs for 
the solution by the Galerkin method of each elliptic problem (Neumann, 
Dirichlet, etc.) encountered in the procedure of computation, and one routine for 
the determination of the curvilinear mesh and of the coefficients of the linear system 
related to the Gale&in method. This latter routine comprises 750 FORTRAN 
statements and has been programmed in order to operate with very general 
domains, including multiplying connexed domains, after having given the (x, r) 
coordinates of the nodes located on the boundary of the domain. The choice of 
test functions is automatically determined by the numbering of these nodes. 
Practically, however, the user always operates in the physical plane. This general 
purpose routine is presently being integrated in the scientific library of the 
Computing Center of the Faculte des Sciences of Orsay, as a program for the 
numerical solution by a finite-element method of elliptic problems defined in 
general domains, and for the determination of conformal mapping of general 
domains onto rectangular domains. The specific subroutines carry out the specific 
tasks of the problem, such as the entrance of the coordinates of the physical 
domain boundary nodes, the determination of the second member of the equation 
of motion, the checking of the balance condition on the jet, etc. 

The method we have introduced is not the first to solve general free-boundary 
problems. Among these, the MAC method and its developments [14, 15, 161 are 
certainly the most powerful, as it can tackle very general problems involving flows 
of viscous fluids. However we think that a large class of free-boundary problems 
can be solved relatively simply with our method, as far as only inviscid 
flows are considered. Results given by this method have been compared with 
purely analytical results with good accordance and a qualitative discussion of the 
rate of convergence of the heuristic procedure of approximations have been 
presented. 
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